Abstract
AbstractBackgroundGenetic and experimental evidence strongly implicates myeloid cells in the etiology of AD and suggests that AD-associated alleles and genes may modulate disease risk by altering the transcriptional and cellular responses of macrophages (like microglia) to damage of lipid-rich tissues (like the brain). Specifically, recent single-cell/nucleus RNA sequencing (sc/nRNA-seq) studies identified a transcriptionally distinct state of subsets of macrophages in aging or degenerating brains (usually referred to as disease- associated microglia or DAM) and in other diseased lipid-rich tissues (e.g., obese adipose tissue, fatty liver, and atherosclerotic plaques). We collectively refer to these subpopulations as lipid-associated macrophages or LAMs. Importantly, this particular activation state is characterized by increased expression of genes involved in the phagocytic clearance of lipid-rich cellular debris (efferocytosis), including several AD risk genes.MethodsWe used sc/nRNA-seq data from human and mouse microglia from healthy and diseased brains and macrophages from other lipid-rich tissues to reconstruct gene regulatory networks and identify transcriptional regulators whose regulons are enriched for LAM response genes (LAM TFs) across species. We then used gene knock- down/knock-out strategies to validate some of these LAM TFs in human THP-1 macrophages and iPSC-derived microgliain vitro, as well as mouse microgliain vivo.ResultsWe nominate 11 strong candidate LAM TFs shared across human and mouse networks (BHLHE41,HIF1A,ID2,JUNB,MAF,MAFB,MEF2A,MEF2C,NACA, POU2F2andSPI1). We also demonstrate a strong enrichment of AD risk alleles in the cistrome ofBHLHE41(and its close homologBHLHE40), thus implicating its regulon in the modulation of disease susceptibility. Loss or reduction ofBHLHE40/41expression in human THP-1 macrophages and iPSC-derived microglia, as well as loss ofBhlhe40/41in mouse microglia led to increased expression of LAM response genes, specifically those involved in cholesterol clearance and lysosomal processing, with a concomitant increase in cholesterol efflux and storage, as well as lysosomal mass and degradative capacity.ConclusionsTaken together, this study nominates transcriptional regulators of the LAM response, experimentally validates BHLHE40/41 in human and mouse macrophages/microglia, and provides novel targets for therapeutic modulation of macrophage/microglia function in AD and other disorders of lipid-rich tissues.Graphical abstract
Publisher
Cold Spring Harbor Laboratory