The long and short of it: Benchmarking viromics using Illumina, Nanopore and PacBio sequencing technologies

Author:

Cook Ryan,Brown Nathan,Rihtman Branko,Michniewski Slawomir,Redgwell Tamsin,Clokie Martha,Stekel Dov JORCID,Chen Yin,Scanlan David J,Hobman Jon L,Nelson Andrew,Jones Michael A,Smith Darren,Millard Andrew

Abstract

AbstractViral metagenomics has fuelled a rapid change in our understanding of global viral diversity and ecology. Long-read sequencing and hybrid approaches that combine long and short read technologies are now being widely implemented in bacterial genomics and metagenomics. However, the use of long-read sequencing to investigate viral communities is still in its infancy. While Nanopore and PacBio technologies have been applied to viral metagenomics, it is not known to what extent different technologies will impact the reconstruction of the viral community.Thus, we constructed a mock phage community of previously sequenced phage genomes and sequenced using Illumina, Nanopore, and PacBio sequencing technologies and tested a number of different assembly approaches. When using a single sequencing technology, Illumina assemblies were the best at recovering phage genomes. Nanopore- and PacBio-only assemblies performed poorly in comparison to Illumina in both genome recovery and error rates, which both varied with the assembler used. The best Nanopore assembly had errors that manifested as SNPs and INDELs at frequencies ~4x and 120x higher than found in Illumina only assemblies respectively. While the best PacBio assemblies had SNPs at frequencies ~3.5 x and 12x higher than found in Illumina only assemblies respectively. Despite high read coverage, long-read only assemblies failed to recover a complete genome for any of the 15 phage, down sampling of reads did increase the proportion of a genome that could be assembled into a single contig.Overall the best approach was assembly by a combination of Illumina and Nanopore reads, which reduced error rates to levels comparable with short read only assemblies. When using a single technology, Illumina only was the best approach. The differences in genome recovery and error rates between technology and assembler had downstream impacts on gene prediction, viral prediction, and subsequent estimates of diversity within a sample. These findings will provide a starting point for others in the choice of reads and assembly algorithms for the analysis of viromes.Data SummaryAll reads from virome sequencing were submitted to the ENA under study PRJEB56639. The assemblies are provided via FigShare (https://figshare.com/s/2d9b5121eb421d370455).Author NotesEight Supplementary Tables and nine Supplementary Figures are available with the online version of this article.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3