Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples

Author:

Buetas Elena,Jordán-López Marta,López-Roldán Andrés,D’Auria Giuseppe,Martínez-Priego Llucia,De Marco Griselda,Carda-Diéguez Miguel,Mira Alex

Abstract

Abstract Background Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. Results With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. Conclusions The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.

Funder

Spanish Ministry of Science and Innovation

The Spanish Ministry of Innovation and Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3