Author:
Ciganda Martin,Sotelo-Silveira José,Smith Joseph T.,Shen Shichen,Qu Jun,Smircich Pablo,Read Laurie K.
Abstract
ABSTRACTTrypanosoma bruceioccupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. Whereas most well-studied organisms rely on transcriptional control as the main regulator of gene expression, post-transcriptional control mechanisms are particularly important inT. brucei, and these are often mediated by RNA-binding proteins. DRBD18 is aT. bruceiRNA-binding protein that interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered,i.e. changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. Proteomic analysis validates these data. In DRBD18-depleted cells, a cohort of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.
Publisher
Cold Spring Harbor Laboratory