Predicting Brain Amyloid Positivity from T1 weighted brain MRI and MRI-derived Gray Matter, White Matter and CSF maps using Transfer Learning on 3D CNNs*

Author:

Chattopadhyay Tamoghna,Ozarkar Saket S.,Buwa Ketaki,Thomopoulos Sophia I.,Thompson Paul M.,

Abstract

AbstractAbnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of Alzheimer’s disease and practical tests could help identify patients who could respond to treatment, now that promising anti-amyloid drugs are available. Even so, Aβ positivity (Aβ+) is assessed using PET or CSF assays, both highly invasive procedures. Here, we investigate how well Aβ+ can be predicted from T1 weighted brain MRI and gray matter, white matter and cerebrospinal fluid segmentations from T1-weighted brain MRI (T1w), a less invasive alternative. We used 3D convolutional neural networks to predict Aβ+ based on 3D brain MRI data, from 762 elderly subjects (mean age: 75.1 yrs. ±7.6SD; 394F/368M; 459 healthy controls, 67 with MCI and 236 with dementia) scanned as part of the Alzheimer’s Disease Neuroimaging Initiative. We also tested whether the accuracy increases when using transfer learning from the larger UK Biobank dataset. Overall, the 3D CNN predicted Aβ+ with 76% balanced accuracy from T1w scans. The closest performance to this was using white matter maps alone when the model was pre-trained on an age prediction in the UK Biobank. The performance of individual tissue maps was less than the T1w, but transfer learning helped increase the accuracy. Although tests on more diverse data are warranted, deep learned models from standard MRI show initial promise for Aβ+ estimation, before considering more invasive procedures.Clinical RelevanceEarly detection of Aβ positivity from less invasive MRI images, could offer a screening test prior to more invasive testing procedures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3