Deep Learning Aided Neuroimaging and Brain Regulation

Author:

Xu Mengze12ORCID,Ouyang Yuanyuan34,Yuan Zhen2ORCID

Affiliation:

1. Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China

2. Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China

3. Nanomicro Sino-Europe Technology Company Limited, Zhuhai 519031, China

4. Jiangfeng China-Portugal Technology Co., Ltd., Macau SAR 999078, China

Abstract

Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier application and the future development trend of precision neuroscience. This review aimed to render comprehensive and informative insights into the recent progress of deep learning and its applications in medical imaging for brain monitoring and regulation. The article starts by providing an overview of the current methods for brain imaging, highlighting their limitations and introducing the potential benefits of using deep learning techniques to overcome these limitations. Then, we further delve into the details of deep learning, explaining the basic concepts and providing examples of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the different types of deep learning models that can be used in medical imaging including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging, and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain monitoring and regulation provides a referrable glance for the intersection of deep learning aided neuroimaging and brain regulation.

Funder

Start-Up Fund for Introduced Talents and Scientific Research at Beijing Normal University

National Key R&D Program of China

Young Scientists Fund of the National Natural Science Foundation of China, Macao Science and Technology Development Fund

University of Macau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3