Long lifetime and selective accumulation of the A-type lamins accounts for the tissue specificity of Hutchinson-Gilford progeria syndrome

Author:

Hasper John,Welle Kevin,Swovick KyleORCID,Hryhorenko Jennifer,Ghaemmaghami SinaORCID,Buchwalter AbigailORCID

Abstract

AbstractMutations to theLMNAgene cause laminopathies including Hutchinson-Gilford progeria syndrome (HGPS) that severely affect the cardiovascular system. The origins of tissue specificity in these diseases are unclear, as the A-type Lamins are abundant and broadly expressed proteins. We show that A-type Lamin protein and transcript levels are uncorrelated across tissues. As protein-transcript discordance can be caused by variations in protein lifetime, we applied quantitative proteomics to profile protein turnover rates in healthy and progeroid tissues. We discover that tissue context and disease mutation each influence A-type Lamin protein lifetime. Lamin A/C has a weeks-long lifetime in the aorta, heart, and fat, where progeroid pathology is apparent, but a days-long lifetime in the liver and gastrointestinal tract, which are spared from disease. The A-type Lamins are insoluble and densely bundled in cardiovascular tissues, which may present an energetic barrier to degradation and promote long protein lifetime. Progerin is even more long-lived than Lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation interferes broadly with protein homeostasis, as hundreds of abundant proteins turn over more slowly in progeroid tissues. These findings indicate that potential gene therapy interventions for HGPS will have significant latency and limited potency in disrupting the long-lived Progerin protein. Finally, we reveal that human disease alleles are significantly over-represented in the long-lived proteome, indicating that long protein lifetime may influence disease pathology and present a significant barrier to gene therapies for numerous human diseases.Significance statementMany human diseases are caused by mutations to broadly expressed proteins, yet disease mysteriously manifests only in specific tissues. An example of this is Hutchinson-Gilford progeria syndrome (HGPS), which is caused by a mutation to the Lamin A/C protein. We show that this mutation slows the turnover of Lamin A/C proteins in disease-afflicted tissues, causing the mutant “Progerin” protein to accumulate over time and interfere with the normal turnover of hundreds of other proteins. Because Progerin is a long-lived protein, effective therapies for this disease will need to attack the protein and not just the gene that encodes it.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3