ChatGPT for Clinical Vignette Generation, Revision, and Evaluation

Author:

Benoit James R. A.ORCID

Abstract

AbstractObjectiveTo determine the capabilities of ChatGPT for rapidly generating, rewriting, and evaluating (via diagnostic and triage accuracy) sets of clinical vignettes.DesignWe explored the capabilities of ChatGPT for generating and rewriting vignettes. First, we gave it natural language prompts to generate 10 new sets of 10 vignettes, each set for a different common childhood illness. Next, we had it generate 10 sets of 10 vignettes given a set of symptoms from which to draw. We then had it rewrite 15 existing pediatric vignettes at different levels of health literacy. Fourth, we asked it to generate 10 vignettes written as a parent, and rewrite these vignettes as a physician, then at a grade 8 reading level, before rewriting them from the original parent’s perspective. Finally, we evaluated ChatGPT for diagnosis and triage for 45 clinical vignettes previously used for evaluating symptom checkers.Setting and participantsChatGPT, a publicly available, free chatbot.Main outcome measuresOur main outcomes for de novo vignette generation were whether ChatGPT followed vignette creation instructions consistently, correctly, and listed reasonable symptoms for the disease being described. For generating vignettes from pre-existing symptom sets, we examined whether the symptom sets were used without introducing extra symptoms. Our main outcome for rewriting existing standardized vignettes to match patient demographics, and rewriting vignettes between styles, was whether symptoms were dropped or added outside the original vignette. Finally, our main outcomes examining diagnostic and triage accuracy on 45 standardized patient vignettes were whether the correct diagnosis was listed first, and if the correct triage recommendation was made.ResultsChatGPT was able to quickly produce varied contexts and symptom profiles when writing vignettes based on an illness name, but overused some core disease symptoms. It was able to use given symptom lists as the basis for vignettes consistently, adding one additional (though appropriate) symptom from outside the list for one disease. Pediatric vignettes rewritten at different levels of health literacy showed more complex symptoms being dropped when writing at low health literacy in 87.5% of cases. While writing at high health literacy, it added a diagnosis to 80% of vignettes (91.7% correctly diagnosed). Symptoms were retained in 90% of cases when rewriting vignettes between viewpoints. When presented with 45 vignettes, ChatGPT identified illnesses with 75.6% (95% CI, 62.6% to 88.5%) first-pass diagnostic accuracy and 57.8% (95% CI, 42.9% to 72.7%) triage accuracy. Its use does require monitoring and has caveats, which we discuss.ConclusionsChatGPT was capable, with caveats and appropriate review, of generating, rewriting, and evaluating clinical vignettes.

Publisher

Cold Spring Harbor Laboratory

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3