A biologically plausible decision-making model based on interacting cortical columns

Author:

Baspinar EmreORCID,Cecchini Gloria,DePass Michael,Andujar Marta,Pani Pierpaolo,Ferraina Stefano,Moreno-Bote Rubén,Cos Ignasi,Destexhe Alain

Abstract

AbstractWe propose a new AdEx mean-field framework to model two networks of excitatory and inhibitory neurons, representing two cortical columns. The columns are interconnected with excitatory connections contacting both Regularly Spiking (excitatory) and Fast Spiking (inhibitory) cells. The model is biophysically plausible since it is based on intercolumnar excitation modeling the long range connections and intracolumnar excitation-inhibition modeling the short range connections. This configuration introduces a bicolumnar competition, sufficient for choosing between two alternatives. Each column represents a pool of neurons voting for one of the two alternatives indicated by two stimuli presented on a monitor in human and macaque experiments. We endow the model with a reward-driven learning mechanism which allows to capture the optimal strategy maximizing the cumulative reward, as well as to model the exploratory behavior of the participant. We compare the simulation results to the behavioral data obtained from the human and macaque experiments in terms of performance and reaction time. This model provides a biophysical ground for simpler phenomenological models proposed for similar decision-making tasks and can be applied to neurophysiological data. Finally, it can be embedded in whole-brain simulators, such as The Virtual Brain (TVB), to study decision-making in terms of large scale brain dynamics.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Changes of Mind in an Attractor Network of Decision-Making

2. Dynamics of pattern formation in lateral-inhibition type neural fields

3. L. Arnold , Stochastic differential equations, New York, (1974).

4. E. Baspinar , G. Cecchini , R. Moreno-Bote , I. Cos , and A. Destexhe , Double columnar Adaptive Exponential mean-field model for decision-making, EBRAINS, 2023.

5. E. Baspinar , G. Cecchini , R. Moreno-Bote , I. Cos , and A. Destexhe , Jupyter notebook of a biophysically plausible decision-making model based on interacting cortical columns, Zenodo, 2023.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3