Toward a model-free feedback control synthesis for treating acute inflammation

Author:

Bara Ouassim,Fliess Michel,Join Cédric,Day Judy,Djouadi Seddik M.

Abstract

AbstractAn effective and patient-specific feedback control synthesis for inflammation resolution is still an ongoing research area. A strategy consisting of manipulating a pro and anti-inflammatory mediator is considered here as used in some promising model-based control studies. These earlier studies, unfortunately, suffer from the difficultly of calibration due to the heterogeneity of individual patient responses even under similar initial conditions. We exploit a new model-free control approach and its corresponding “intelligent” controllers for this biomedical problem. A crucial feature of the proposed control problem is as follows: the two most important outputs which must be driven to their respective desired states are sensorless. This difficulty is overcome by assigning suitable reference trajectories to the other two outputs that do have sensors. A mathematical model, via a system of ordinary differential equations, is nevertheless employed as a “virtual” patient forin silicotesting. We display several simulation results with respect to the most varied situations, which highlight the effectiveness of our viewpoint.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3