Complexity and ultrastructure of infectious extracellular vesicles from cells infected by non-enveloped virus

Author:

Yang Jie E.,Rossignol Evan D.,Chang DeborahORCID,Zaia JosephORCID,Forrester IsaacORCID,Saulsbery Holly,Nicastro DanielaORCID,Jackson William T.,Bullitt EstherORCID

Abstract

AbstractEnteroviruses support cell-to-cell viral transmission prior to their canonical lytic spread of virus. Poliovirus (PV), a prototype for human pathogenic positive-sense RNA enteroviruses, and picornaviruses in general, transport multiple virionsen blocvia infectious extracellular vesicles secreted from host cells. Using biochemical and biophysical methods we identify multiple components in these secreted vesicles, including PV virions; positive and negative-sense viral RNA; essential viral replication proteins; ribosomal and regulatory cellular RNAs; and numerous host cell proteins, such as regulators of cellular metabolism and structural remodeling. Using cryo-electron tomography, we visualize the near-native three-dimensional architecture of secreted infectious extracellular vesicles containing both virions and a unique mat-like structure. Based on our biochemical data (western blot, RNA-Seq, and mass spectrometry), these mat-like structures are expected to be comprised of unencapsidated RNA and proteins. Our data show that, prior to cell lysis, non-enveloped viruses are secreted within infectious vesicles that also transport viral and host RNAs and proteins.ImportanceThe family of picornaviridae is comprised of small positive-sense RNA viruses, many of which are significant human pathogens. Picornaviruses exploit secreted extracellular vesicles for cell-to-cell viral transmission without cell lysis, and poliovirus serves as a model system for picornaviruses that are not protected by a surrounding membrane (non-enveloped viruses). The structure and contents of these vesicles secreted by virus-infected cells are described here. In addition to mature virions, these vesicles carry negative-sense, ‘template’ viral RNA and essential replication proteins, as well as cellular resources from the host. Their complex contents may comprise an enhanced virulence factor for propagation of infection, and understanding their structure and function is helping elucidate the mechanism by which extracellular vesicles contribute to the spread of non-enveloped virus infection.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. An ESCRT–spastin interaction promotes fission of recycling tubules from the endosome

2. Extracellular vesicles are the Trojan horses of viral infection

3. Ausubel, F.M. , Brent, R. , Kingston, R.E. , Moore, D.D. , Seidman, J.G. , Smith, J.A. , Struhl, K. (eds.) (2003). Current Protocols in Molecular Biology 3.13.1. John Wiley & Sons, Inc.

4. Arenavirus Infection Induces Discrete Cytosolic Structures for RNA Replication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3