Profiling of chromatin accessibility across Aspergillus species and identification of transcription factor binding sites in the Aspergillus genome using filamentous fungi ATAC-seq

Author:

Huang Lianggang,Li Xuejie,Dong Liangbo,Wang Bin,Pan LiORCID

Abstract

AbstractTo identify cis-regulatory elements (CREs) and motifs of TF binding is an important step in understanding the regulatory functions of TF binding and gene expression. The lack of experimentally determined and computationally inferred data means that the genome-wide CREs and TF binding sites (TFBs) in filamentous fungi remain unknown. ATAC-seq is a technique that provides a high-resolution measurement of chromatin accessibility to Tn5 transposase integration. In filamentous fungi, the existence of cell walls and the difficulty in purifying nuclei have prevented the routine application of this technique. Herein, we modified the ATAC-seq protocol in filamentous fungi to identify and map open chromatin and TF-binding sites on a genome-scale. We applied the assay for ATAC-seq among different Aspergillus species, during different culture conditions, and among TF-deficient strains to delineate open chromatin regions and TFBs across each genome. The syntenic orthologues regions and differential changes regions of chromatin accessibility were responsible for functional conservative regulatory elements and differential gene expression in the Aspergillus genome respectively. Importantly, 17 and 15 novel transcription factor binding motifs that were enriched in the genomic footprints identified from ATAC-seq data of A. niger, were verified in vivo by our artificial synthetic minimal promoter system, respectively. Furthermore, we first confirmed the strand-specific patterns of Tn5 transposase around the binding sites of known TFs by comparing ATAC-seq data of TF-deficient strains with the data from a wild-type strain.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3