A passive, camera-based head-tracking system for real-time, 3D estimate of head position and orientation in rodents

Author:

Vanzella Walter,Grion Natalia,Bertolini Daniele,Perissinotto Andrea,Zoccolan Davide

Abstract

AbstractTracking head’s position and orientation of small mammals is crucial in many behavioral neurophysiology studies. Yet, full reconstruction of the head’s pose in 3D is a challenging problem that typically requires implanting custom headsets made of multiple LEDs or inertial units. These assemblies need to be powered in order to operate, thus preventing wireless experiments, and, while suitable to study navigation in large arenas, their application is unpractical in the narrow operant boxes employed in perceptual studies. Here we propose an alternative approach, based on passively imaging a 3D-printed structure, painted with a pattern of black dots over a white background. We show that this method is highly precise and accurate and we demonstrate that, given its minimal weight and encumbrance, it can be used to study how rodents sample sensory stimuli during a perceptual discrimination task and how hippocampal place cells represent head position over extremely small spatial scales.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3