A system for tracking whisker kinematics and whisker shape in three dimensions

Author:

Petersen Rasmus S.,Rodriguez Andrea ColinsORCID,Evans Mathew Hywel,Campagner Dario,Loft Michaela S. E.

Abstract

AbstractQuantification of behaviour is essential for systems neuroscience. Since the whisker system is a major model system for investigating the neural basis of behaviour, it is important to have methods for measuring whisker movements from behaving animals. Here, we developed a high-speed imaging system that measures whisker movements simultaneously from two vantage points. We developed an algorithm that uses the ‘stereo’ video data to track multiple whiskers by fitting 3D curves to the basal section of each target whisker. By using temporal information to constrain the fits, the algorithm is able to track multiple whiskers in parallel with low error rate. We used the output of the tracker to produce a 3D description of each tracked whisker, including its 3D orientation and 3D shape, as well as bending-related mechanical force. In conclusion, we present an automatic system to track whiskers in 3D from high-speed video, creating the opportunity for comprehensive 3D analysis of sensorimotor behaviour and its neural basis.Author summaryThe great ethologist Niko Tinbergen described a crucial challenge in biology to measure the “total movements made by the intact animal”. Advances in high-speed video and machine analysis of such data have made it possible to make profound advances. Here, we target the whisker system. The whisker system is a major experimental model in neurobiology and, since the whiskers are readily imageable, the system is ideally suited to machine vision. Rats and mice explore their environment by sweeping their whiskers to and fro. It is important to measure whisker movements in 3D, since whiskers move in 3D and since the mechanical forces that act on them are 3D. However, the problem of automatically tracking whiskers in 3D from video has generally been regarded as prohibitively difficult. Our innovation here is to extract 3D information about whiskers using a two-camera, high-speed imaging system and to develop computational methods to infer 3D whisker state from the imaging data. Our hope is that this study will facilitate comprehensive, 3D analysis of whisker behaviour and, more generally, contribute new insight into brain mechanisms of perception and behaviour.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3