Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer

Author:

Baruteau Julien,Perocheau Dany P.,Hanley Joanna,Rocha-Ferreira Eridan,Karda RajvinderORCID,Ng Joanne,Suff Nattalie,Rahim Ahad A.,Hughes Michael P.,Banushi Blerida,Prunty Helen,Hristova Mariya,Ridout Deborah A.,Virasami Alex,Heales Simon,Howe Stewen J.,Buckley Suzy M.,Mills Philippa B.,Gissen PaulORCID,Waddington Simon N.ORCID

Abstract

ABSTRACTArgininosuccinate lyase (ASL) belongs to the liver-based urea cycle detoxifying ammonia, and the citrulline-nitric oxide cycle synthesising nitric oxide (NO). ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia and a multi-organ disease with neurocognitive impairment. Current therapeutic guidelines aim to control ammonaemia without considering the systemic NO imbalance. Here, we observed a neuronal disease with oxidative/nitrosative stress in ASL-deficient mouse brains. A single systemic injection of gene therapy mediated by an adeno-associated viral vector serotype 8 (AAV8) in adult or neonatal mice demonstrated the long-term correction of the urea cycle and the citrulline-NO cycle in the brain, respectively. The neuronal disease persisted if ammonaemia only was normalised but was dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This was correlated with behavioural improvement and a decrease of the cortical cell death rate. Thus, the cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress not mediated by hyperammonaemia, which is reversed by AAV gene transfer targeting the brain and the liver, acting on two different metabolic pathways via a single vector delivered systemically. This approach provides new hope for hepatocerebral metabolic diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3