EXPERIMENTAL STUDY OF MEAN DROPLET SIZE FROM PRESSURE SWIRL ATOMIZER

Author:

Amedorme Sherry

Abstract

This experimental study undertakes the measurements of droplet Sauter Mean Diameter (SMD) at different axial distances for the hollow-cone nozzle and different radial distances from the spray centreline using a laser-diffraction-based drop size analyser in order to validate atomization model. The study also investigates the influence of injection pressure and the evaluation of two exit orifice diameters on the Sauter Mean Diameter (SMD). The drop size distributions along the nozzle centreline as well as the radial drop distributions from spray centreline are also evaluated. To enhance the physics of liquid sheet instability and liquid film breakup mechanisms, visualization of liquid film breakup as a function of injection pressure was carried out. The results show that mean droplet size (SMD) increases in the axial distance on the spray centreline but decreases with an increasing injection pressure on the spray centreline. It was observed that larger sized drops occupy the spray periphery compared to those occupying the spray core. For the nozzle exit orifice diameters of 3.5 mm and 1.5 mm, the results show that the small nozzle exhibits smaller SMDs than the bigger nozzle and the break-up lengths are different for the two nozzles. The drop size distributions at radial positions showed an increase in droplet formation through the spray downstream distances and become more uniform. The visualisation of the spray was carried out using high-speed camera and it was noted that a well-defined hollow-cone spray was captured and that the spray angle increases with the injection pressure but reduces with the liquid film length.

Publisher

Granthaalayah Publications and Printers

Reference20 articles.

1. Wittig, S., et al., Optical measurements of droplet size distributions: Special considerations in the parameter definition for fuel atomizers. 1984, Karlsruhe Univ (Germany Fr) Inst Fuer Thermische Stroemungsmaschinen.

2. Broniarz-Press, L., et al., The effect of orifice shape and the injection pressure on enhancement of the atomization process for pressure-swirl atomizers. Crop Protection, 2016. 82: p. 65-74.

3. Lefebvre, A.H. and V.G. McDonell, Atomization and sprays. 2017: CRC press.

4. Malvern-Instruments, Spraytec User Manual MAN0368. 2007, Issue.

5. Malvern/INSITEC, Method for measuring particle size in the presence of multiple scattering. 1997, Google Patents: US.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3