IMPROVEMENT OF THE MICROFLUIDIC DEVICE FOR THE GENERATION OF MONODISPERSE MICROBUBBLES AS DRUG TRANSPORT SYSTEMS

Author:

W. D Araújo FilhoORCID,A. G. S Chaves Antônio,F. F. Dos Santos,Santos Junior A. F.

Abstract

INTRODUCTION: The localized delivery of drugs has been established since the early eighties of the 20th century as a promising alternative for the localized treatment of tumours, based on the mitigation of side effects produced by traditional methods, notably the administration of chemotherapy by systemic route. Countless scientific works have been dealing with this theme in an attempt to make this therapeutic technique viable and accessible. One of the ways to take the drug to the chosen site is through the use of microbubbles as drug carrier units activated through an ultrasonic field with adequate wavelength and frequency. Therefore, these units must have very peculiar characteristics, such as dimensions, homogeneity, echogenicity and structural characteristics, in addition to the ability to take the therapeutic vector intact to the desired location. In the generation of microbubbles, microfluidic devices of different geometries and different configurations are used, according to the state of the art related to this theme. DEVELOPMENT: In this work the technique used is the fabrication of micro fluidic devices using 3D printing. With this technique, it is possible to manufacture the devices in a single step, eliminating time-consuming and more complex intermediate procedures. The devices were manufactured using an Object Eden 250 printer, using the transparent resin VeroClear®. With these devices it was possible to produce microbubbles with diameters of the order of 16-73 µm with degrees of poly dispersion less than 1%. However, there are difficulties to be overcome, notably with regard to the final composition of the devices. Due to the physical characteristics of the microbubble, notably in relation to its lipid coating layer, the search for drug transport systems is an important strategy.  CONCLUSION: In this work, an account of these difficulties will be made, in addition to the proposition of alternatives to overcome them. Additionally, compatible drugs will be suggested to be attached to microbubbles according to their structural composition.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3