Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery

Author:

Filho Walter Duartede Araujo,Schneider Fábio Kurt,Morales Rigoberto EM

Abstract

Abstract Background Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. Methods A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. Results The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. Conclusion The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical applications even when regular air is used as the gas phase. Improved stability can be achieved when biocompatible gas with lower permeability is used.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference27 articles.

1. Ketan Pancholi, Eleanor Stride and Mohan: Edirisinghe- Dynamics of Bubble Formation in Highly Viscous Liquids- Langmuir, Vol. 24. American Chemical Society; 2008.

2. Pancholi KP, Farook U, Moaleji R, Stride E, Edirisinghe MJ: Novel methods for preparing phospholipid coated microbubbles. Eur Biophys J Biophys Lett 2008, 37: 515–520. 10.1007/s00249-007-0211-x

3. Brethertonon FP: The motion of long bubbles in tubes. Journal of Fluid Mechanics 1961, 10: 166–168. 10.1017/S0022112061000160

4. Squires TM, Quake SR: Micro fluidics: Fluid physics at the nanoliter scale. Reviews of modern physics 2005, 77: 977–1026. 10.1103/RevModPhys.77.977

5. Taotao F, Youguang M, Funfschilling D, Hua Z: Li-Bubble formation and breakup mechanism in a microfluidic flow-focusing device-Chemical Engineering. Science 2009, 64(10):2392–2400.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3