Time-Dependent Electric Field Distribution in Layered Paper-Oil Insulation

Author:

Håkonseth Gunnar,Ildstad Erling

Abstract

Layered paper–oil insulation is used in several types of HVDC equipment. In order to better understand breakdown mechanisms and optimize the design, it is important to understand the electric field distribution in the insulation. In the present work, a test object with such insulation has been modeled as a series connection of oil and impregnated paper. The permittivity, conductivity, and the dielectric response function has been measured for impregnated paper and oil separately and used as parameters in a dielectric response model for the layered insulation system. A system of differential equations has been established describing the voltages across each material, i.e. across each layer of the test object. These equations have been solved considering a DC step voltage across the whole test object. Based on this, the time-dependent electric field in each material as well as the time-dependent polarization current density in the test object have been calculated. The calculated polarization current density was found to agree well with the measured polarization current density of the test object. This indicates that application of dielectric response theory gives a good estimate of the time-dependent electric field distribution in layered insulation systems. The results show that 90 % of the change from initial values to steady-state values for the electric fields has occurred within the first 35 minutes after the voltage step. This applies to the electric fields in both of the materials of the examined test object at a temperature of 323 K.

Publisher

Norwegian University of Science and Technology (NTNU) Library

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3