High-Yield Synthesis of Cubic and Hexagonal Boron Nitride Nanoparticles by Laser Chemical Vapor Decomposition of Borazine

Author:

Hidalgo A.1,Makarov V.1,Morell G.12,Weiner B. R.23

Affiliation:

1. Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA

2. Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931, USA

3. Department of Chemistry, University of Puerto Rico, San Juan, PR 00936, USA

Abstract

We report a new method for the synthesis of boron nitride nanostructures (nBN) using laser chemical vapor decomposition (LCVD). Borazine was used as precursor and excited with two simultaneous radiations, the fundamental and second YAG laser harmonics. If only one of the two radiations is employed, no reaction takes place. Abundant BN powder is obtained after one hour of laser radiation. The BN yield obtained with the LCVD technique is about 83% by weight. The BN material was characterized using scanning electron microscopy, transmission electron microscopy, electron energy loss spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. They all indicate that the BN powder consists of a mixture of hexagonal and cubic BN nanostructures. No other BN phases or stoichiometries were found. The size of the resulting BN nanostructures is in the range of 20–100 nm and their B : N composition is 1 : 1. A simplified mechanism involving laser-excited states followed by photoinduced removal of hydrogen is proposed to understand the synthesis of BN nanopowder by LCVD of borazine.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3