Simulating the Action Principle in Optics

Author:

Bari Refath1

Affiliation:

1. The City College of New York , New York, NY; rbari002@citymail.cuny.edu

Abstract

Light has a fascinating property: it always travels the path that takes the least time between any two points. This is the motivating property behind optical phenomena such as reflection and refraction. The unreasonable economic efficiency of light is captured by a single proposition: the principle of least action (PLA) in optics. Unlike reflection and refraction, which emerge from optimizing a one-dimensional function, the PLA emerges from optimizing an infinite-dimensional functional. The PLA can be difficult for students to comprehend, as the formulation of the Lagrangian is often left unexplained. To this end, this paper presents various simulations to demonstrate the action principle, including a numerical solution to a generalization of the brachistochrone problem to an arbitrary refractive profile. The interactive simulations discussed in the paper are available at Ref. 1.

Publisher

American Association of Physics Teachers (AAPT)

Subject

General Physics and Astronomy,Education

Reference41 articles.

1. https://refath.notion.site/Simulating-the-Action-Principle-in-Optics-750967eeda5342e6b3decac04756b855.

2. Max Tegmark, “Shut up and calculate,” arXiv:0709.4024 (2007).

3. Despoina Bouzounieraki, “The principle of least action: An explorative investigation of learning difficulties and teaching strategies,” Master’s thesis, University of Copenhagen, 2017, pp. 1–55.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reflection from Inclined, Relativistic Light Sails;The Astronomical Journal;2023-12-21

2. Simulating the Action Principle in Optics;The Physics Teacher;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3