Foamability and Foam Stability Screening for Smart Water Assisted Foam Flooding: A New Hybrid EOR Method

Author:

Hassan Anas Mohammed1,Ayoub Mohammed2,Eissa Mysara2,Al-Shalabi Emad W.1,Almansour Abdullah3,Alquraishi Abdulrahman3

Affiliation:

1. Khalifa University of Science and Technology

2. Universiti Teknologi PETRONAS

3. King Abdulaziz City for Science and Technology

Abstract

AbstractThe smart water-assisted foam flooding (SWAF) technique is a novel EOR method that is a synergic combination of smart water and foam-flooding methods. Smart water enables multi-level improvements, such as stabilizing foam-lamella and altering the wettability of the carbonate rock, which results in a desirable relative-permeability behavior. This paper experimentally investigated foam characterization related to enhanced oil recovery (EOR) using the smart water-assisted foam flooding (SWAF) technique including foamability and foam stability. This study aims to identify the foaming agents (surfactants) of the highest efficiency for employing in core flooding tests to establish their performance in porous-medium. Moreover, foamability and foam-stability tests were conducted to categorize the foams of selected anionic and cationic surfactants. The latter helps in developing an optimum surfactant aqueous solution (SAS) with the ability to form stable foams in both the presence and absence of crude oils with varying total acid and base numbers (TAN and TBN). The selected surfactants were Cetyltrimethylammonium bromide (CTAB), Dodecyltrimethylammonium bromide (DTAB), Alpha olefin sulfonate (AOS), and a commercial product termed as Alpha-foamer (Alkyl Ether Sulfates). These selected surfactants were tested in light, medium, and heavy crude oils from the Middle East region. Also, the effect of gases on foamability and foam-stability processes were examined using carbon dioxide (CO2) and nitrogen (N2).The gases were injected at a fixed flow rate (i.e., 25 and 50 mL/min) through surfactant solutions to generate foams. To determine the foam stability, the novel simplified R5 parameter was used, which involves introducing a controlled volume of gas into a finite volume of surfactant solution. Furthermore, in the screening process, it was observed that all the selected surfactants have good foamability with CTAB (e.g., 51 cm foam height in MgCl2 using N2 gas injection) and AOS (e.g., 49 cm foam height in MgCl2 using N2 gas injection) surfactants exhibiting the highest foam-durability when oil was absent. It was also noted that an increase in surfactant concentrations increased foam longevity. Moreover, the foam stability and oil-displacement efficiency were investigated using varying concentrations of CTAB, DTAB, Alfa-foamer, and AOS solutions. It was found that the presence of oil affected the foam columns’ stability. The extent of this effect depends on the surfactant-types, surfactant-concentrations, and the chemical solvation properties where stability decreases in the low concentration ranges of CTAB and all tested concentration ranges of DTAB. For the CTAB solution, it was observed that the oil remained in the lamella skeleton and its plateau borders without any noticeable drain out. Contrariwise, it was observed that DTAB could lift a sizable portion of the oil column, but could not sustain it for a longer duration with a quick drain out of oil. Incorporating CTAB and AOS into the SAS, enhanced its properties and proved to be the most effective foaming agent (i.e., both in the absence and presence of crude oil at R5 of 90 and 80%, respectively) used in core flooding for testing performance in a porous medium. Finally, under optimum SAS and smart water conditions, the proposed SWAF technique has the potential to be a commercially lucrative and environmentally acceptable novel hybrid EOR-method in carbonates.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3