Numerical Investigation of Hybrid Carbonated Smart Water Injection (CSWI) in Carbonate Cores

Author:

Hassan Anas Mohammed1,Al-Shalabi Emad W.1,Ghosh Bisweswar1,Tackie-Otoo Bennet N.2,Ayoub Mohammed Abdalla2,Adel Imad A.1

Affiliation:

1. Department of Petroleum Engineering, Khalifa University of Science and Technology, UAE

2. Department of Petroleum Engineering, Universiti Teknologi PETRONAS, UTP, Malaysia

Abstract

AbstractCarbonated smart water injection (CSWI) is a potential hybrid EOR technology under development. The process involves dissolving CO2 in smart water ripping the benefits of the synergic effect of CO2 injection and smart water. Based on the experimental laboratory data, including core flood experiments, this paper presents numerical investigations of the combined impact of dissolving carbon dioxide (CO2) in smart water (SW) on oil recovery in carbonate cores. An advanced processes reservoir simulator was utilized to build a core-scale model. Both the physics of smart water flooding as well as CO2-gas injection were captured. The generated model was validated against the coreflooding experimental data on hybrid CSWI, including cumulative oil production (cc) and oil recovery factor (%). The Corey's correlation relative permeability model was used for capturing the multiphase flow. The numerical model was used to understand the underlying recovery mechanisms and crude oil-brine-rock interactions during CSWI. The model was further utilized to perform sensitivity analysis of different parameters and to optimize the CSWI design.Based on the numerical results, the experimental coreflooding data were accurately history-matched using the proposed model with a minimal error of 8.79% applying the PSO-based optimization method. Moreover, this history-matched model was further used for sensitivity analysis and optimization of the CSWI process. The objective functions for sensitivity analysis and optimization are based on minimizing the history-matching global error and maximizing oil recovery. The optimized design was achieved by performing a sensitivity analysis of various input parameters such as oil and water saturations (Soi and Swi), DTRAP (i.e., relative permeability interpolation parameter). On the other hand, in terms of maximizing the oil recovery while minimizing the usage of injected CSW solutions during CSWI, the optimal solution via the PSO-based approach achieved a cumulative oil recovery of 55.5%. The main mechanism behind additional oil recovery with CSW is due mainly to wettability alteration and ion exchange between rock and brine. Additionally, CSWI was found to be more efficient in releasing trapped oil compared to waterflooding, indicating the synergic effect of dissolved CO2 in SW solutions. Based on this research, the envelope of CSWI application in carbonates for CO2-storage is expected to expand. This study presents one of the few works on numerical modeling of the CSWI process and capturing its effects on oil recovery. The optimized core-scale model can be further used as a base to build a field-scale model. This promising hybrid CSWI process under optimum conditions is expected to be economical and environmentally acceptable, which promotes future field projects.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3