A Novel Ultrasonic Cased-Hole Imager for Enhanced Cement Evaluation

Author:

van Kuijk Robert1,Zeroug Smaine1,Froelich Benoit2,Allouche Michael1,Bose Sandip1,Miller Douglas3,Le Calvez Jean-Luc2,Schoepf Virginie1,Pagnin Andrea2

Affiliation:

1. Schlumberger

2. Schlumberger Riboud Product Center

3. Schlumberger-Doll Research

Abstract

Abstract Current acoustic (sonic and ultrasonic) techniques for cement evaluation have proved to be limited in providing unambiguous answers to the zonal isolation issue. This is especially true in lightweight cements where they often fail to differentiate cement from mud. Also, as far as imaging of the cement sheath is concerned, ultrasonic pulse-echo tools fail to image beyond the cemented region adjacent to the casing, thus providing limited diagnosis of the annulus. A new ultrasonic imaging tool has been developed to address these limitations. The new imager combines the classical pulse-echo technique with a new ultrasonic technique that provides temporally compact echoes arising from propagation along the casing and also reflections at the cement-formation interface. Processing these signals yields unprecedented characterization of the cased hole environment in terms of the nature and acoustic velocity of the material filling the annulus between casing and formation, the material immediately behind casing, the position of the casing within the hole, and the geometrical shape of the hole. Different wells cemented with conventional and light cements were logged with the new experimental tool. The results demonstrate enhanced cement evaluation for both cement types and significant reduction in the uncertainty in making a squeeze or no-squeeze decision. Introduction Cement evaluation logging tools have been used successfully for many years to evaluate casing and cement conditions. These tools, which use sonic or ultrasonic1 techniques, are designed for conventional steel casing and cements. The sonic tools, commonly known as Cement Bond Log or CBL, operate at frequencies of about 20 kHz and measure the amplitude or the attenuation of a wave traveling along the casing. The wave loses energy mainly though shear coupling to the surrounding cement, so that well-bonded solid cement attenuates more quickly than a fluid. Due to the low frequency, the CBL logs made with these tools lack azimuthal resolution, which makes it difficult to distinguish channeling from poor cement properties.

Publisher

IPTC

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3