An Integrated Modeling Approach for Vertical Gas Migration Along Leaking Wells Using a Compressible Two-Fluid Flow Model

Author:

Qiao YangyangORCID,Skadsem Hans Joakim,Evje Steinar

Abstract

AbstractGas migration behind casings can occur in wells where the annular cement barrier fails to provide adequate zonal isolation. A direct consequence of gas migration is annular pressure build-up at wellhead, referred to as sustained casing pressure (SCP). Current mathematical models for analyzing SCP normally assume gas migration along the cemented interval to be single-phase steady-state Darcy flow in the absence of gravity and use a drift-flux model for two-phase transport through the mud column above the cement. By design, such models do not account for the possible simultaneous flow of gas and liquid along the annulus cement or the impact of liquid saturation within the cemented intervals on the surface pressure build-up. We introduce a general compressible two-fluid model which is solved over the entire well using a newly developed numerical scheme. The model is first validated against field observations and used for a parametric study. Next, detailed studies are performed, and the results demonstrate that the surface pressure build-up depends on the location of cement intervals with low permeability, and the significance of two-phase co-current or counter-current flow of liquid and gas occurs along cement barriers that have an initial liquid saturation. As the magnitude of the frictional pressure gradient associated with counter-current of liquid and gas can be comparable to the relevant hydrostatic pressure gradient, two-phase flow effects can significantly impact the interpretation of the wellhead pressure build-up.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3