New Generation Fracturing Fluid with Superior Proppant Transport and Oil Displacement Functionalities

Author:

Lin Genyao1,Huang Jiangshui1,Richardi Bryant1,Yu Stephanie1,Li Jianshen2,Liu Fuchen2,Lin Lijun1

Affiliation:

1. CNPC USA, Houston, Texas, USA

2. CNPC USA, Houston, Texas, USA / CNPC Engineering Technology R&D Company Ltd, Beijing, China

Abstract

Abstract Multifunctional fracturing fluid is desirable in the oil and gas industry as it can simplify hydraulic fracturing operations and reduce environmental impact. Traditional high-viscosity fluids, like borate crosslinked fluid, can effectively transport proppant to keep fractures open but can constrain fracture length and damage the proppant pack. Conversely, low-viscosity options like linear gels, can extend fracture length and facilitate secondary fractures, but have limited proppant carrying capabilities. Recent efforts have attempted to combine fracturing fluid with surfactants to achieve both hydraulic fracturing and improved oil recovery. However, these efforts require multiple additives and still lack sufficient proppant transportation. This study introduces a new generation fracturing fluid combining superior proppant transport and oil displacement functionalities, formulated with a unique polymer containing chemically bonded oil displacement surfactant. The new fracturing fluid was evaluated using a range of tests, including static proppant suspension test, rheology test, coreflood, regained conductivity and oil displacement tests. The static proppant suspension test compared the new fracturing fluid with a linear gel. The fluid's rheological properties were measured using an advanced rheometer. The spontaneous imbibition Amott test was conducted to appraise the fluid's oil displacement properties. The coreflood and regained conductivity studies were conducted at 160°F to evaluate the fluid's formation and proppant pack damage. The new generation fracturing fluid excelled in all tests studied. In the static proppant suspension test, it suspended the 20-40 mesh ceramic proppant much longer than the traditional guar-based fluid. The rheology test revealed that the 0.3wt% fluid's storage modulus G’ is higher than the loss modulus G" across the whole spectrum of frequency tested, signifying high elasticity of the fluid. The spontaneous imbibition test demonstrated the new fluid increased the relative oil recovery rate by 12.1% compared to the control polymer. The coreflood results showed an 85.7% regained permeability for the 0.4wt% new fluid. The conductivity study showed a 94.7% regained conductivity. These results demonstrate that the next generation fracturing fluid can not only offer superior proppant transport capability but also it can be easily broken down by traditional breaker and then release the oil displacement surfactant to achieve oil displacement functionality. These features make the new fracturing fluid an excellent choice for hydraulic fracturing applications with less freshwater usage and reduced environmental impact.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3