Stability of Chemically Degraded Friction Reducers and Their Relationship to Regain Conductivity

Author:

Ayazi Philip1,Monreal Gabriel1,Bleibel Hassan1,Zamora Frank1,Watters Larry1

Affiliation:

1. Premier Oilfield Group

Abstract

Abstract Previously, it was shown that zeta potential could be used as a metric to determine friction reducer (FR) performance. Specifically, the extent of and how quickly the FR reaches peak friction reduction in source water. A correlation postulated from the previous work is zeta potentials relationship to an FR's stability during mechanical or chemical degradation. In other words, can zeta potential be used as a metric to determine the extent of polymer breaking and can this relationship be translated to regained conductivity? This paper describes a laboratory study of zeta potential measurements to track breaker reaction rates, stability of broken polymer dispersions, and the relationship between chemical degradation of FRs and regained conductivity. The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic and cationic FRs with varying types and concentrations of breakers at different temperatures and times. These metrics are then correlated with regain conductivity. A quantitative relationship exists between zeta potential, fluid rheology, and regain conductivity. Zeta potential evaluation of degraded FR's in frac fluids correlate to performance in regain conductivity testing. These measurements can expedite the selection of chemical breakers with respect to performance. Zeta potential measurements of degraded FR are indicative of broken FR dispersion stability which has impact on regain conductivity. Tracking behavior of cationic FR's using zeta potential reveals the materials can become anionic with time and temperature and become susceptible to agglomeration with iron. Zeta potential measurements can be used during a chemical breaker selection process as a viable supplement to industry standard tests for assessing the comparative effectiveness of chemical breakers in frac fluids.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3