Affiliation:
1. Premier Oilfield Group
Abstract
Abstract
Previously, it was shown that zeta potential could be used as a metric to determine friction reducer (FR) performance. Specifically, the extent of and how quickly the FR reaches peak friction reduction in source water. A correlation postulated from the previous work is zeta potentials relationship to an FR's stability during mechanical or chemical degradation. In other words, can zeta potential be used as a metric to determine the extent of polymer breaking and can this relationship be translated to regained conductivity? This paper describes a laboratory study of zeta potential measurements to track breaker reaction rates, stability of broken polymer dispersions, and the relationship between chemical degradation of FRs and regained conductivity.
The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic and cationic FRs with varying types and concentrations of breakers at different temperatures and times. These metrics are then correlated with regain conductivity. A quantitative relationship exists between zeta potential, fluid rheology, and regain conductivity. Zeta potential evaluation of degraded FR's in frac fluids correlate to performance in regain conductivity testing. These measurements can expedite the selection of chemical breakers with respect to performance. Zeta potential measurements of degraded FR are indicative of broken FR dispersion stability which has impact on regain conductivity. Tracking behavior of cationic FR's using zeta potential reveals the materials can become anionic with time and temperature and become susceptible to agglomeration with iron. Zeta potential measurements can be used during a chemical breaker selection process as a viable supplement to industry standard tests for assessing the comparative effectiveness of chemical breakers in frac fluids.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献