Digital Wellbore Stability Prediction with Machine Learning

Author:

Liu Peng1,Li Jian2,Chen Bo2,Yan Gongrui1,Lei Qihong2,Liang Lin3,Huang Yansong1,Zhao Haipeng1,Wang Gaige1,Sun Maoyou1

Affiliation:

1. SLB, Beijing, China

2. PetroChina Changqing Ltd, Xi An, Shaanxi, China

3. Schlumberger-Doll Research, Cambridge, USA

Abstract

Abstract One of the main challenges during drilling is wellbore instability. Traditionally, geomechanical model construction and wellbore stability (WBS) analysis are manually executed by geomechanics experts for well planning and drilling. The procedures are usually complicated and time-consuming due to subsurface complexity, and the results highly depend on the executor's expertise. This makes WBS analysis far from ideal and automatic. In this study, we present a physics-incorporated machine learning method that performs WBS analysis in a simple and automatic way. First, it characterizes and digitalizes subsurface geostructures geometry by labeling formations and its lithology. Then, it trains a digital geomechanics model using a series of machine learning algorithms with existing data, such as geology, well logs, drilling data, and geomechanical data. The rock mechanical properties, including rock elastic modulus and rock strength, are trained as formation material property models which describe the changing patterns in each formation. The formation pore pressure and in-situ earth stresses are trained using a physics-based hybrid algorithms, taking into account formation compaction and tectonic settings. Lastly, wellbore stability along any planned well trajectories can be predicted using this digital geomechanics model to identify drilling risks, optimize safe mud weight, and hence improve drilling practices. This digital approach was tested and validated in a shale oil field in Ordos Basin, China. In this field, horizonal wells are drilled targeting a shale oil reservoir, this requires pre-drill WBS analysis, which usually takes several weeks following a manual methodology. With the developed new method, the digital geomechanical model was trained with seven surfaces representing different geological formations and well data from six existing vertical wells. The digital model and WBS results, including formation collapse pressure, mud loss pressure and breakdown pressure, were then compared against manual results calculated by geomechanics experts using traditional methods. The digital results matched well with manual results. The comparison demonstrated the applicability and reliability with a learning accuracy of over 99%. With this digital model, the geomechanical properties and WBS analysis of five planned horizontal wells were accurately predicted and proved consistent with actual drilling results. Another significant advantage is the high computational efficiency and reduced need for supervision. In this case, the digital machine-learning method reduced the WBS analysis time for five wells from weeks to hours. This field case confirms the effectiveness and efficiency of transferring domain knowledge and data into digital models, it enables support for massive cluster horizontal drilling activities on well pad and field scale.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3