Combination of Machine Learning and Kriging for Spatial Estimation of Geological Attributes
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s11053-021-10003-w.pdf
Reference76 articles.
1. Al-Anazi, A., & Gates, I. D. (2010). On the capability of support vector machines to classify lithology from well logs. Natural Resources Research, 19(2), 125–139.
2. Al-Anazi, A., & Gates, I. D. (2010). Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers& Geosciences, 36(12), 1494–1503.
3. Alpaydin, E. (2014). Introduction to Machine Learning (3rd ed.). The MIT Press.
4. An, S., Liu, W., & Venkatesh, S. (2007). Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition, 40(8), 2154–2162.
5. Badel, M., Angorani, S., & Panahi, M. S. (2011). The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers& Geosciences, 37(4), 530–540.
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint;Computer Methods in Applied Mechanics and Engineering;2024-12
2. A multi-view ensemble machine learning approach for 3D modeling using geological and geophysical data;International Journal of Geographical Information Science;2024-08-22
3. Machine learning for robust structural uncertainty quantification in fractured reservoirs;Geothermics;2024-06
4. Mapping surface sediment characteristics in enclosed shallow‐marine environments using spatially balanced designs and the random forest algorithm;Earth Surface Processes and Landforms;2024-05-09
5. Mapping soil trace metal distribution using remote sensing and multivariate analysis;Environmental Monitoring and Assessment;2024-05-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3