Machine Learning Techniques Application for Real-Time Drilling Hydraulic Optimization

Author:

Elmgerbi Asad1,Chuykov Egor1,Thonhauser Gerhard1,Nascimento Andreas2

Affiliation:

1. Montanuniversität Leoben

2. Federal University of Espirito Santo

Abstract

Abstract Over the past decade, several methods and techniques have been proposed to optimize drilling hydraulic's in real-time; one of these techniques is machine learning, which has shown promising results in prediction and optimization. Nevertheless, the real-time implementation of these techniques is still challenging since most of the published work tried to perform prediction tasks rather than the optimization task. In this regard, this paper tries to tackle the shortcomings of the recently published related methods by presenting a holistic model, based on a machine learning concept, focused on real-time optimization of drilling hydraulic's within a sufficiently short time span and without disturbing the drilling process. The presented approach relies on using two interconnected models to achieve the goal, which can be classified into, data-driven and analytical models. The real-time optimization process starts by using two predictive models to predict standpipe pressure and annular pressure losses and an analytical model to compute the drill-string pressure loss. Subsequently, the three generated values are used by an optimizer algorithm to generate the optimum combinations of surface drilling parameters, namely, weight on bit, flow rate, and rotation per minute, which are expected to optimize drilling hydraulic. Two case studies were conducted based on a historical drilling data set to assess the performance of the utilized predictive models and to measure the time required for the model to perform an optimization task. The results reveal that the predictive model demonstrated very high accuracy in terms of predicting SPP and APL as indicated by the determination coefficient value (R2), which was between 0.87 and 0.99. Moreover, the overall simulation time was within a range of between 2 to 4 minutes, which is considered a rational time frame for a real-time optimization task. The methodology applied allowed us to conclude, even showing some limitations, that machine learning techniques can be well used for hydraulic optimization in real-time.

Publisher

IPTC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3