Abstract
Accurate measurement of pressure drop in energy sectors especially oil and gas exploration is a challenging and crucial parameter for optimization of the extraction process. Many empirical and analytical solutions have been developed to anticipate pressure loss for non-Newtonian fluids in concentric and eccentric pipes. Numerous attempts have been made to extend these models to forecast pressure loss in the annulus. However, there remains a void in the experimental and theoretical studies to establish a model capable of estimating it with higher accuracy and lower computation. Rheology of fluid and geometry of system cumulatively dominate the pressure gradient in an annulus. In the present research, the prediction for Herschel–Bulkley fluids is analyzed by Bayesian Neural Network (BNN), random forest (RF), artificial neural network (ANN), and support vector machines (SVM) for pressure loss in the concentric and eccentric annulus. This study emphasizes on the performance evaluation of given algorithms and their pitfalls in predicting accurate pressure drop. The predictions of BNN and RF exhibit the least mean absolute error of 3.2% and 2.57%, respectively, and both can generalize the pressure loss calculation. The impact of each input parameter affecting the pressure drop is quantified using the RF algorithm.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference66 articles.
1. Konsistenzmessungen von Gummi-Benzollösungen
2. Yield-Power Law Model more Accurately Predicts Mud Rheology;Hemphill;Oil and Gas Journal,1993
3. Technology Equations Determine Flow States for Yield-Pseudoplastic Drilling Fluids.|Oil & Gas Journalhttps://www.ogj.com/home/article/17234529/technology-equations-determine-flow-states-for-yieldpseudoplastic-drilling-fluids
4. Rheologic and Hydraulic Parameter Integration Improves Drilling Operations.|Oil & Gas Journalhttps://www.ogj.com/home/article/17230023/rheologic-and-hydraulic-parameter-integration-improves-drilling-operations
5. In-Situ Rheological Characterization of Drilling Mud
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献