In-Situ Rheological Characterization of Drilling Mud

Author:

Maglione Roberto1,Robotti Giovanni2,Romagnoli Raffaele3

Affiliation:

1. ENI SpA, Agip Div.

2. Natl. Research Council

3. Polytechnic of Turin

Abstract

Summary The rheological model of Herschel and Bulkley reported in 1926 can be applied to determine the characteristic parameters of a drilling fluid. In this paper, an in-situ characterization approach is proposed. During flow tests at fixed drilling depths inside the well the pump rates and the relative stand pipe pressures (SPP's) are recorded. This allows one to determine in-situ the Herschel and Bulkley rheological parameters and the behavior of the drilling mud circulating in the well. The results are compared to those obtained in the laboratory using a Fann VG 35 viscometer for the same drilling mud. It is found that the rheological triad from the viscometer data does not always coincide with the rheological triad from the in-situ drilling test. Thus, the calculated SPP using viscometer readings could lead to misleading errors for an actual process. This method could be useful not only to calculate and predict the SPP, but also to evaluate with accuracy the annular pressure drop in order to obtain the maximum allowable pump rates without fracturing the formations. We discuss the sensitivity of the results in relation to the equivalent viscosity of the drilling fluids considered to some of the main practical drilling parameters, such as the flow velocity and pressure spatial distribution along the wellbore profile and, with reference to the mud structure, sensitivity to pressure and temperature. Considering the drilling well essentially as a viscometer (WAV) enables one to investigate the performance of the drilling hydraulic circuit and also the effects of the true effective viscosity (here called equivalent viscosity) and of the rheological behavior of the muds in all types of wells, and overall in deep wells with great accuracy.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3