Drilling Parameter Based Geomechanical Log Application: A Fracture Stage Selection Case Study in Tight Gas Sand Development Wells

Author:

Bentosa Elena1,Makechnie Glenn1,Rabines Jaime1,Meridji Yacine1

Affiliation:

1. Saudi Aramco

Abstract

Abstract In heterogeneous tight sand formations, horizontal wells encounter intervals deposited under varying depositional environments along the lateral portion of the wellbore between landing point and total depth. Horizontal wells in this study were drilled in tight sands deposited in a marine environment where lateral depositional facies changes are common, and hydraulic fracture stimulation is necessary to achieve economic hydrocarbon extraction due to the relatively low permeability of the formation. Without geomechanical logs currently derived from wireline logging, it is not possible to optimize cluster spacing and placement. This step provides necesary information used to optimize completion design, which is crucial to the ultimate productivity of a well. Due to formation heterogeneity, expensive wireline logs must be collected in order to optimize fracture stimulation or else new methods to estimate these logs must be employed. This paper presents a technique to optimize cluster selection for hydraulic fracturing in unconventional tight gas development horizontal wells without wireline logging by leveraging Measure While Drilling (MWD) Gamma Ray logs and surface drilling parameters together with Artificial Intelegence (AI) algorythms to predict density, compressional and shear slowness logs for use in geomechanical evaluation.

Publisher

IPTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Workflow for Estimating Reservoir Properties With Gradient Boosting Model and Joint Inversion Using MWD Measurements;Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3