Machine learning algorithms for real-time prediction of the sonic logs based on drilling parameters and downhole accelerometers
Author:
Affiliation:
1. Curtin University
2. Saudi Aramco
Publisher
Society of Exploration Geophysicists
Link
https://library.seg.org/doi/pdf/10.1190/segam2020-3427085.1
Reference10 articles.
1. Identifying Inefficient Drilling Conditions Using Drilling-Specific Energy
2. Bakulin, A., Hemyari, E., and Silvestrov, I., 2019, Acquisition trial of DrillCAM: Real-time seismic with wireless geophones, instrumented top drive and near-bit accelerometer: 89th Annual International Meeting, SEG, Expanded Abstracts, 157–161, doi: 10.1190/segam2019-3214516.1.
3. Gan, T., A. Kumar, M. Ehiwario, B. Zhang, C. Sembroski, O. de Jesus, O. Hoffmann, and Y. Metwally, 2019, Artificial intelligent logs for formation evaluation using case studies in Gulf of Mexico and trinidad and Tobago: Annual Technical Conference and Exhibition, SPE.
4. Hareland, G., and R. Nygaard, 2007, Calculating unconfined rock strength from drilling data: Proceedings of the 1st Canada-US Rock Mechanics Symposium – Rock Mechanics Meeting Society’s Challenges and Demands, 1717–1723, doi: 10.1201/NOE0415444019-c216.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Drilling Anomalies Identification Using Near Bit Vibrations;Day 1 Mon, February 12, 2024;2024-02-12
2. Reservoir characterization through comprehensive modeling of elastic logs prediction in heterogeneous rocks using unsupervised clustering and class-based ensemble machine learning;Applied Soft Computing;2023-11
3. Formation lithology predictions based on measurement while drilling (MWD) using gradient boosting algorithms;Geoenergy Science and Engineering;2023-08
4. Improving shallow and deep seismic-while-drilling with a downhole pilot in a desert environment;GEOPHYSICS;2022-12-05
5. Real-Time Compressional Sonic Log Prediction from Drilling and Mud Gas Data Using Machine Learning;Day 2 Tue, November 01, 2022;2022-10-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3