Sentiment Analysis using Improved Novel Convolutional Neural Network (SNCNN)

Author:

Kalaiarasu M.,Kumar C. Ranjeeth

Abstract

Sentiment Analysis is an important method in which many researchers are working on the automated approach for extraction and analysis of huge volumes of user achieved data, which are accessible on social networking websites. This approach helps in analyzing the direct falls under the domain of SA. SA comprises the vast field of effective classification of user-initiated text under defined polarities. The proposed work includes four major steps for solving these issues: the first step is preprocessing which holds tokenization, stop word removal, stemming, cleaning up of unwanted text information like removing of Ads from Web pages, Text normalization for converting binary format. Secondly, the Feature extraction is based on the Bag words, Word2Vec and TF-ID which is a Term Frequency-Inverse Document Frequency. Thirdly, this feature selection includes the procedure for examining semantic gaps along with source features using teaching models and this involves target task characteristic application for Improved Novel Convolutional Neural Network (INCNN). The Feature Selection accompanies the procedure of Information Gain (IG) and PCC which is a Pearson Correlation Coefficient. Finally, the classification step INCNN gives out sentiment posts and responses for the user-based post aspects which helps in enhancing the system performance. The experimental outcome proposes the INCNN algorithm and provides higher performance rather than the existing approach. The proposed INCNN classifier results in highest accuracy.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text Sentiment Analysis Based on a New Hybrid Network Model;Computational Intelligence and Neuroscience;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3