Text Sentiment Analysis Based on a New Hybrid Network Model

Author:

Zhou Yancong1ORCID,Zhang Qian1,Wang Dongdong2,Gu Xiaoying1

Affiliation:

1. School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China

2. Information Center, Hebei Provincial Tax Service State Taxation Administration, Shijiazhuang 050046, China

Abstract

The research of text sentiment analysis based on deep learning is increasingly rich, but the current models still have different degrees of deviation in understanding of semantic information. In order to reduce the loss of semantic information and improve the prediction accuracy as much as possible, the paper creatively combines the doc2vec model with the deep learning model and attention mechanism and proposes a new hybrid sentiment analysis model based on the doc2vec + CNN + BiLSTM + Attention. The new hybrid model effectively exploits the structural features of each part. In the model, the understanding of the overall semantic information of the sentence is enhanced through the paragraph vector pretrained by the doc2vec structure which can effectively reduce the loss of semantic information. The local features of the text are extracted through the CNN structure. The context information interaction is completed through the bidirectional cycle structure of the BiLSTM. The performance is improved by allocating weight and resources to the text information of different importance through the attention mechanism. The new model was built based on Keras framework, and performance comparison experiments and analysis were performed on the IMDB dataset and the DailyDialog dataset. The results have shown that the accuracy of the new model on the two datasets is 91.3% and 93.3%, respectively, and the loss rate is 22.1% and 19.9%, respectively. The accuracy on the IMDB datasets is 1.0% and 0.5% higher than that of the CNN-BiLSTM-Attention model and ATT-MCNN-BGRUM model in the references. Comprehensive comparison has shown the overall performance is improved, and the new model is effective.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference27 articles.

1. Design and implementation of E-commerce intelligent customer service system based on deep neural network;H. Zhang;Software Engineering,2021

2. Emotional analysis of user online reviews based on text mining;W. Miao;Scientific Journal of Economics and Management Research,2021

3. Text sentiment analysis based on sentiment lexicon and context language model;S. Yang;Journal of Computer Applications,2021

4. Comparative study of various approaches, applications and classifiers for sentiment analysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3