Abstract
The failure of rotating machine elements causes unnecessary downtime of the machine. Fault in the rotating machinery can be identified from noises, vibration signals obtained from sensors. Bearing and shaft are the most important basic rotating machine elements. Detection of fault from vibration signals is widely used method in condition monitoring techniques for diagnosis of machine elements. Fault diagnosis from sound signals is cost effective than vibration signals. Sound signal analysis is not well explored in the field of automated fault diagnosis. Under various simulated fault conditions, the sound signals are obtained by placing microphone near the bearing for different speeds. The features are extracted by using statistical and histogram methods. The best features of sound signals are obtained by decision tree algorithm. The extracted features are used as inputs to the classifier-Artificial Neural Network. The classification accuracy results from statistical and histogram features are obtained and compared.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献