Intelligent Fault Diagnosis Model for Rotating Machinery Based on Fusion of Sound Signals

Author:

Saimurugan M.,Nithesh R.

Abstract

The failure of rotating machine elements causes unnecessary downtime of the machine. Fault in the rotating machinery can be identified from noises, vibration signals obtained from sensors. Bearing and shaft are the most important basic rotating machine elements. Detection of fault from vibration signals is widely used method in condition monitoring techniques for diagnosis of machine elements. Fault diagnosis from sound signals is cost effective than vibration signals. Sound signal analysis is not well explored in the field of automated fault diagnosis. Under various simulated fault conditions, the sound signals are obtained by placing microphone near the bearing for different speeds. The features are extracted by using statistical and histogram methods. The best features of sound signals are obtained by decision tree algorithm. The extracted features are used as inputs to the classifier-Artificial Neural Network. The classification accuracy results from statistical and histogram features are obtained and compared.

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3