Characterization of Friction and Wear Behavior of Friction Modifiers used in Wheel-Rail Contacts

Author:

Oomen M. A.,Bosman R.,Lugt P.M.

Abstract

Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different compositions of carrier and particles, to characterize their friction and wear behavior. It is shown experimentally that the influence of the carrier cannot be neglected just after application and very low (0.01-0.05) frictional values are observed in a fully flooded situation. However, starvation occurs quickly and friction values will become relatively stable at an intermediate level around μ=0.2 until the friction modifier is consumed and a new dose is required. After the carrier is pushed out of the running track the particles in the contact dominate the tribological performance. The level of friction is a function of total rolling distance, effective sliding length and sum velocity. The most dominant factor depends on the friction modifier and the working mechanism for friction stabilization. It is also shown that the wear rates during tests do not depend significantly on slip, which makes it possible to predict wear behavior. Wear rates are dependent on the type of friction modifier used.

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3