Abstract
The full-information best-choice problem, as posed by Gilbert and Mosteller in 1966, asks us to find a stopping rule which maximizes the probability of selecting the largest of a sequence of n i.i.d. standard uniform random variables. Porosiński, in 1987, replaced a fixed n by a random N, uniform on {1,2,…,n} and independent of the observations. A partial-information problem, imbedded in a 1980 paper of Petruccelli, keeps n fixed but allows us to observe only the sequence of ranges (max - min), as well as whether or not the current observation is largest so far. Recently, Porosiński compared the solutions to his and Petruccelli's problems and found that the two problems have identical optimal rules as well as risks that are asymptotically equal. His discovery prompts the question: why? This paper gives a good explanation of the equivalence of the optimal rules. But even under the lens of a planar Poisson process model, it leaves the equivalence of the asymptotic risks as somewhat of a mystery. Meanwhile, two other problems have been shown to have the same limiting risks: the full-information problem with the (suboptimal) Porosiński-Petruccelli stopping rule, and the full-information ‘duration of holding the best’ problem of Ferguson, Hardwick and Tamaki, which turns out to be nothing but the Porosiński problem in disguise.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献