Abstract
Abstract
The best-choice problem and the duration problem, known as versions of the secretary problem, are concerned with choosing an object from those that appear sequentially. Let (B,p) denote the best-choice problem and (D,p) the duration problem when the total number N of objects is a bounded random variable with prior p=(p1, p2,...,pn) for a known upper bound n. Gnedin (2005) discovered the correspondence relation between these two quite different optimal stopping problems. That is, for any given prior p, there exists another prior q such that (D,p) is equivalent to (B,q). In this paper, motivated by his discovery, we attempt to find the alternate correspondence {p(m),m≥0}, i.e. an infinite sequence of priors such that (D,p(m-1)) is equivalent to (B,p(m)) for all m≥1, starting with p(0)=(0,...,0,1). To be more precise, the duration problem is distinguished into (D1,p) or (D2,p), referred to as model 1 or model 2, depending on whether the planning horizon is N or n. The aforementioned problem is model 1. For model 2 as well, we can find the similar alternate correspondence {p[m],m≥ 0}. We treat both the no-information model and the full-information model and examine the limiting behaviors of their optimal rules and optimal values related to the alternate correspondences as n→∞. A generalization of the no-information model is given. It is worth mentioning that the alternate correspondences for model 1 and model 2 are respectively related to the urn sampling models without replacement and with replacement.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献