Abstract
Recently Propp and Wilson [14] have proposed an algorithm, called coupling from the past (CFTP), which allows not only an approximate but perfect (i.e. exact) simulation of the stationary distribution of certain finite state space Markov chains. Perfect sampling using CFTP has been successfully extended to the context of point processes by, amongst other authors, Häggström et al. [5]. In [5] Gibbs sampling is applied to a bivariate point process, the penetrable spheres mixture model [19]. However, in general the running time of CFTP in terms of number of transitions is not independent of the state sampled. Thus an impatient user who aborts long runs may introduce a subtle bias, the user impatience bias. Fill [3] introduced an exact sampling algorithm for finite state space Markov chains which, in contrast to CFTP, is unbiased for user impatience. Fill's algorithm is a form of rejection sampling and similarly to CFTP requires sufficient monotonicity properties of the transition kernel used. We show how Fill's version of rejection sampling can be extended to an infinite state space context to produce an exact sample of the penetrable spheres mixture process and related models. Following [5] we use Gibbs sampling and make use of the partial order of the mixture model state space. Thus we construct an algorithm which protects against bias caused by user impatience and which delivers samples not only of the mixture model but also of the attractive area-interaction and the continuum random-cluster process.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献