Affiliation:
1. UQ, Brisbane
2. TIFR, Mumbai
3. University of Amsterdam
Abstract
We consider the problem of generating perfect samples from a Gibbs point process, a spatial process that is absolutely continuous w.r.t. a Poisson point process. Examples include area-interaction processes, hard-sphere models and Strauss processes. Traditionally, this is addressed using coupling from the past (CFTP) based methods. We consider acceptance-rejection methods that, unlike the common CFTP methods, do not have the impatient-user bias. Our key contribution is a novel importance sampling based acceptance- rejection methodology for generating perfect samples from Gibbs point processes. We focus on a simpler setting of hard-sphere models in a d-dimensional hypercube that we analyze in an asymptotic regime where the number of spheres generated increases to infinity while the sphere radius decreases to zero at varying rates.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献