Asymptotic independence for unimodal densities

Author:

Balkema Guus,Nolde Natalia

Abstract

Asymptotic independence of the components of random vectors is a concept used in many applications. The standard criteria for checking asymptotic independence are given in terms of distribution functions (DFs). DFs are rarely available in an explicit form, especially in the multivariate case. Often we are given the form of the density or, via the shape of the data clouds, we can obtain a good geometric image of the asymptotic shape of the level sets of the density. In this paper we establish a simple sufficient condition for asymptotic independence for light-tailed densities in terms of this asymptotic shape. This condition extends Sibuya's classic result on asymptotic independence for Gaussian densities.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference25 articles.

1. [4] Balkema A. A. , Embrechts P. and Nolde N. (2009). Sensitivity of the asymptotic behaviour of meta distributions. Preprint. Available at http://arxiv.org/abs/0912.5337v/.

2. On Multivariate Extremal Processes

3. Robust Bayesian inference in ℓ q -spherical models;Osiewalski;Biometrika,1993

4. Statistics for near independence in multivariate extreme values

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical inference for multivariate extremes via a geometric approach;Journal of the Royal Statistical Society Series B: Statistical Methodology;2024-03-28

2. Exploring Data Cautiously;The Art of Finding Hidden Risks;2024

3. Central limit theorems and asymptotic independence for local U-statistics on diverging halfspaces;Bernoulli;2023-11-01

4. Linking representations for multivariate extremes via a limit set;Advances in Applied Probability;2022-06-13

5. A geometric investigation into the tail dependence of vine copulas;Journal of Multivariate Analysis;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3