Statistical inference for multivariate extremes via a geometric approach

Author:

Wadsworth Jennifer L1,Campbell Ryan1

Affiliation:

1. Department of Mathematics and Statistics, Lancaster University , Lancaster , UK

Abstract

Abstract A geometric representation for multivariate extremes, based on the shapes of scaled sample clouds in light-tailed margins and their so-called limit sets, has recently been shown to connect several existing extremal dependence concepts. However, these results are purely probabilistic, and the geometric approach itself has not been fully exploited for statistical inference. We outline a method for parametric estimation of the limit set shape, which includes a useful non-/semi-parametric estimate as a pre-processing step. More fundamentally, our approach provides a new class of asymptotically motivated statistical models for the tails of multivariate distributions, and such models can accommodate any combination of simultaneous or non-simultaneous extremes through appropriate parametric forms for the limit set shape. Extrapolation further into the tail of the distribution is possible via simulation from the fitted model. A simulation study confirms that our methodology is very competitive with existing approaches and can successfully allow estimation of small probabilities in regions where other methods struggle. We apply the methodology to two environmental datasets, with diagnostics demonstrating a good fit.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Reference41 articles.

1. Meta densities and the shape of their sample clouds;Balkema;Journal of Multivariate Analysis,2010

2. Asymptotic dependence for homothetic light-tailed densities;Balkema;Advances in Applied Probability,2012

3. Asymptotic independence for unimodal densities;Balkema;Advances in Applied Probability,2010

4. Statistics of Extremes

5. The multivariate Gaussian tail model: An application to oceanographic data;Bortot;Journal of the Royal Statistical Society Series C: Applied Statistics,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3