Isolation and analysis of a sake yeast mutant with phenylalanine accumulation

Author:

Nishimura Akira1,Isogai Shota1,Murakami Naoyuki2,Hotta Natsuki2,Kotaka Atsushi2,Matsumura Kengo2,Hata Yoji2,Ishida Hiroki2,Takagi Hiroshi1

Affiliation:

1. Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

2. Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan

Abstract

Abstract Sake is a traditional Japanese alcoholic beverage brewed by the yeast Saccharomyces cerevisiae. Since the consumption and connoisseurship of sake has spread around the world, the development of new sake yeast strains to meet the demand for unique sakes has been promoted. Phenylalanine is an essential amino acid that is used to produce proteins and important signaling molecules involved in feelings of pleasure. In addition, phenylalanine is a precursor of 2-phenylethanol, a high-value aromatic alcohol with a rose-like flavor. As such, adjusting the quantitative balance between phenylalanine and 2-phenylethanol may introduce value-added qualities to sake. Here, we isolated a sake yeast mutant (strain K9-F39) with phenylalanine accumulation and found a missense mutation on the ARO80 gene encoding the His309Gln variant of the transcriptional activator Aro80p involved in the biosynthesis of 2-phenylethanol from phenylalanine. We speculated that mutation of ARO80 would decrease transcriptional activity and suppress the phenylalanine catabolism, resulting in an increase of intracellular phenylalanine. Indeed, sake brewed with strain K9-F39 contained 60% increase in phenylalanine, but only 10% less 2-phenylethanol than sake brewed with the parent strain. Use of the ARO80 mutant in sake brewing may be promising for the production of distinctive new sake varieties.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3