Common and Rare Genetic Variants That Could Contribute to Severe Otitis Media in an Australian Aboriginal Population

Author:

Jamieson Sarra E1,Fakiola Michaela2,Tang Dave1,Scaman Elizabeth1,Syn Genevieve1,Francis Richard W1,Coates Harvey L3,Anderson Denise1,Lassmann Timo1,Cordell Heather J4,Blackwell Jenefer M1ORCID

Affiliation:

1. Telethon Kids Institute, The University of Western Australia, Perth, Western Australia

2. FIRC Institute of Molecular Oncology (IFOM), Milan, Italy

3. Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia

4. Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK

Abstract

Abstract Background Our goal was to identify genetic risk factors for severe otitis media (OM) in Aboriginal Australians. Methods Illumina® Omni2.5 BeadChip and imputed data were compared between 21 children with severe OM (multiple episodes chronic suppurative OM and/or perforations or tympanic sclerosis) and 370 individuals without this phenotype, followed by FUnctional Mapping and Annotation (FUMA). Exome data filtered for common (EXaC_all ≥ 0.1) putative deleterious variants influencing protein coding (CADD-scaled scores ≥15] were used to compare 15 severe OM cases with 9 mild cases (single episode of acute OM recorded over ≥3 consecutive years). Rare (ExAC_all ≤ 0.01) such variants were filtered for those present only in severe OM. Enrichr was used to determine enrichment of genes contributing to pathways/processes relevant to OM. Results FUMA analysis identified 2 plausible genetic risk loci for severe OM: NR3C1 (Pimputed_1000G = 3.62 × 10−6) encoding the glucocorticoid receptor, and NREP (Pimputed_1000G = 3.67 × 10−6) encoding neuronal regeneration-related protein. Exome analysis showed: (i) association of severe OM with variants influencing protein coding (CADD-scaled ≥ 15) in a gene-set (GRXCR1, CDH23, LRP2, FAT4, ARSA, EYA4) enriched for Mammalian Phenotype Level 4 abnormal hair cell stereociliary bundle morphology and related phenotypes; (ii) rare variants influencing protein coding only seen in severe OM provided gene-sets enriched for “abnormal ear” (LMNA, CDH23, LRP2, MYO7A, FGFR1), integrin interactions, transforming growth factor signaling, and cell projection phenotypes including hair cell stereociliary bundles and cilium assembly. Conclusions This study highlights interacting genes and pathways related to cilium structure and function that may contribute to extreme susceptibility to OM in Aboriginal Australian children.

Funder

Australian National Health and Medical Research Council

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3