Using Ancestry-Informative SNPs to Quantify Introgression of European Alleles into North American Red Foxes

Author:

Kuo Yi Hung12,Vanderzwan Stevi L2,Kasprowicz Adrienne E3,Sacks Benjamin N4ORCID

Affiliation:

1. Forensic Sciences Graduate Program, University of California, Davis, Davis, CA

2. The Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA

3. The Department of Biology, University of New Orleans, New Orleans, LA

4. The Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA

Abstract

Abstract A recent study demonstrated that British red foxes introduced to the mid-Atlantic coastal plain (ACP) of the eastern United States during the late 18th century successfully interbred with indigenous American red foxes despite half a million year’s divergence. However, a large disparity in frequency of European mitochondria (27%) versus Y chromosomes (1%) left unclear the magnitude of genetic exchange. We sought to quantify genomic introgression using 35 autosomal and 5 X-chromosome ancestry-informative markers (AIMs) in conjunction with diagnostic Y chromosome single nucleotide polymorphism (Y-SNP) markers to characterize the modern state of red foxes in the eastern United States and to gain insight into the potential role of reproductive barriers. European admixture was highest in the ACP and apparently restricted to the central eastern United States. We estimated only slightly (and nonsignificantly) European ancestry in autosomal than X-chromosome markers. European ancestry from autosomal and X-chromosome markers (36.4%) was higher than the corresponding mitochondrial (mt) DNA estimate (26.4%) in the ACP. Only 1 of 124 males (<1%) in the ACP had European Y chromosomes, which was similar to the neighboring regions, in which 2 of 99 (2%) males carried a European Y chromosome (the same haplotype). Although we could not rule out drift as the cause of low European Y-chromosome frequency, results were also consistent with F1 male infertility. In the future, more extensive genomic sequencing will enable a more thorough investigation of possible barrier genes on the X chromosome as well as throughout the genome.

Funder

Mammalian Ecology and Conservation Unit

University of California, Davis

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3