The March of the Beetles: Epistatic Components Dominate Divergence in Dispersal Tendency in Tribolium castaneum

Author:

Ruckman Sarah N12,Blackmon Heath12ORCID

Affiliation:

1. Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX

2. Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, 2475 TAMU, College Station, TX

Abstract

Abstract The genetic underpinnings of traits are rarely simple. Most traits of interest are instead the product of multiple genes acting in concert to determine the phenotype. This is particularly true for behavioral traits, like dispersal. Our investigation focuses on the genetic architecture of dispersal tendency in the red flour beetle, Tribolium castaneum. We used artificial selection to generate lines with either high or low dispersal tendency. Our populations responded quickly in the first generations of selection and almost all replicates had higher dispersal tendency in males than in females. These selection lines were used to create a total of 6 additional lines: F1 and reciprocal F1, as well as 4 types of backcrosses. We estimated the composite genetic effects that contribute to divergence in dispersal tendency among lines using line cross-analysis. We found variation in the dispersal tendency of our lines was best explained by autosomal additive and 3 epistatic components. Our results indicate that dispersal tendency is heritable, but much of the divergence in our selection lines was due to epistatic effects. These results are consistent with other life-history traits that are predicted to maintain more epistatic variance than additive variance and highlight the potential for epistatic variation to act as an adaptive reserve that may become visible to selection when a population is subdivided.

Funder

National Institute of General Medical Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3