Affiliation:
1. Department of Biology, Indiana University , Bloomington, IN , USA
Abstract
Abstract
CRISPR/Cas9 manipulations are possible in many insects and ever expanding. Nonetheless, success in one species and techniques developed for it are not necessarily applicable to other species. As such, the development and expansion of CRISPR-based (clustered regularly interspaced short palindromic repeats) genome-editing tools and methodologies are dependent upon direct experimentation. One useful technique is Cas9-dependent homologous recombination, which is a critical tool for studying gene function but also for developing pest related applications like gene drive. Here, we report our attempts to induce Cas9 homology directed repair (HDR) and subsequent gene drive in Tribolium castaneum (Herbst; Insecta: Coleoptera: Tenebrionidae). Utilizing constructs containing 1 or 2 target gRNAs in combination with Cas9 under 2 different promoters and corresponding homology arms, we found a high incidence of CRISPR/Cas9 induced mutations but no evidence of homologous recombination. Even though the generated constructs provide new resources for CRISPR/Cas9 modification of the Tribolium genome, our results suggest that additional modifications and increased sample sizes will be necessary to increase the potential and detection for HDR of the Tribolium genome.
Publisher
Oxford University Press (OUP)