Affiliation:
1. School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California, Merced, CA
Abstract
Abstract
The genetic underpinnings that contribute to ecological adaptation and speciation are not completely understood, especially within marine ecosystems. These evolutionary processes can be elucidated by studying adaptive radiations, because they provide replicates of divergence within a given environment or time-frame. Marine rockfishes (genus Sebastes) are an adaptive radiation and unique model system for studying adaptive evolution in the marine realm. We investigated molecular evolution associated with ecological (depth) and life history (lifespan) divergence in 2 closely related clades of Sebastes. Brain transcriptomes were sequenced via RNA-Seq from 3 species within the subgenus Pteropodus and a pair of related congeners from the subgenus Sebastosomus in order to identify patterns of adaptive evolution. De novo assemblies from these transcriptomes were used to identify 3867 orthologous clusters, and genes subject to positive selection were identified based on all 5 species, depth, and lifespan. Within all our analyses, we identified hemoglobin subunit α to be under strong positive selection and is associated with the depth of occurrence. In our lifespan analysis we identified immune function genes under positive selection in association with maximum lifespan. This study provides insight on the molecular evolution of rockfishes and these candidate genes may provide a better understanding of how these subgenera radiated within the Northeast Pacific.
Funder
National Science Foundation
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献